
Mathematica Moravica
Vol. 20:2 (2016), 39–57

Optimal harvesting policy for the
Beverton–Holt quantum difference model

Martin Bohner and Sabrina Streipert

Abstract. In this paper, we introduce exploitation to the Beverton–
Holt equation in the quantum calculus time setting. We first give a brief
introduction to quantum calculus and to the Beverton–Holt q-difference
equation before formulating the harvested Beverton–Holt q-difference
equation. Under the assumption of a periodic carrying capacity and
periodic inherent growth rate, we derive its unique periodic solution,
which globally attracts all solutions. We further derive the optimal
harvest effort for the Beverton–Holt q-difference equation under the
catch-per-effort hypothesis. Examples are provided and discussed in
the last section.

1. Introduction

Beverton and Holt introduced their population model in the context of
fisheries [3] in 1957 as

(1) xn+1 =
νKxn

K + (ν − 1)xn
, n ∈ N0,

where x0 > 0, ν > 1 is the inherent growth rate, and K > 0 is the carrying
capacity.

The model is applied in various fields such as biology, economy and so-
cial science, see [2, 3, 18, 15]. To achieve a more realistic presentation of
population dynamics, additional assumptions have been added to the tradi-
tional model such as contest competition [12], within-year resource limited
competition [14], and survivor-rates [13]. In [17], the authors considered
modifications of the Beverton–Holt model and the authors of [16] discussed
the sigmoid Beverton–Holt model.

In [11], the authors investigated (1) on time scales. Recently, assuming a
periodically forced environment and periodic growth rate, (1) was analyzed
and the Cushing–Henson conjectures for the case of periodic coefficients were
discussed in [7].
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In [10], the authors discussed the Beverton–Holt equation with exploita-
tion that reads as

(2) (1 + hn)xn+1 =
Knνnxn

Kn + (νn − 1)xn
,

where h represents the harvest effort.
The following theorems were proved in [10].

Theorem 1.1 (See [10]). Assume

(3)


K: N0 → R+ is ω-periodic,
α : N0 → R+ is ω-periodic and 0 < αn < 1 for all n ∈ N0,

h : N0 → R+ is ω-periodic and 0 < hn <
αn

1−αn for all n ∈ N0.

Then (2) has a unique ω-periodic solution which globally attracts all its so-
lutions.

Theorem 1.2 (See [10]). Assume (3) and (in order to guarantee a nonneg-
ative harvest effort)

K∆
n

Kn
≤ 1 +

√
1− αn+1

(1 +
√

1− αn)
√

1− αn+1
− 1.

The optimal harvest effort for (2) is

h∗ = 	
(

1

2
� (−α)

)σ
	

( 1
2
�(−α)

α

)∆

1
2
�(−α)

α

	 K∆

K
,

and the maximal harvest yield over one period is

Y (h∗) =
ω−1∑
j=0

(
1
2 � (−αj)

)2
αj

Kj =
ω−1∑
j=0

(1−
√

1− αj)2

αj
Kj .

In this paper, we include exploitation to the periodically forced Beverton–
Holt equation in the quantum calculus setting, which is classically defined
as

x(qt) =
ν(t)K(t)x(t)

K(t) + (ν(t)− 1)x(t)
,

where x0 > 0, and ν,K : qN0 → R are the inherent growth rate and carrying
capacity, respectively.

In [4], the authors analyzed the solution of classical quantum Beverton–
Holt model for one-periodic growth rate ν and also discussed the Cushing–
Henson conjectures for the case of a one-periodic inherent growth rate. The
case of a one-periodic inherent growth rate for the q-difference equation cor-
responds to a constant inherent growth rate in the classical Beverton–Holt
differential/difference equation. In [8, 9], the Beverton–Holt q-difference
equation, assuming periodic growth rate and periodic carrying capacity, as
investigated and formulations related to the Cushing–Henson conjectures
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were presented. In this work, we continue the discussion of the Beverton–
Holt q-difference equation from an economical perspective by including ex-
ploitation by a catch-per-effort hypothesis. We formulate the model and
derive its periodic solution, which is shown to be globally asymptotically
stable. Further, the maximum sustainable yield for the harvested Beverton–
Holt q-difference equation is derived.

2. Some Quantum Calculus Essentials

In this section, we provide some quantum calculus prerequisites. Through-
out, let q > 1.

Definition 2.1 (See [5, Definition 1.1]). The forward jump operator
σ : qN0 → qN0 is defined by

σ(t) := qt, t ∈ qN0 .

Definition 2.2 (See [5, Definition 2.25]). A function p : qN0 → R is called
regressive provided

1 + µ(t)p(t) 6= 0 for all t ∈ qN0 , where µ(t) = σ(t)− t = (q − 1)t.

The set of all regressive functions is denoted by R. Moreover, p ∈ R is called
positively regressive, denoted by p ∈ R+, if

1 + µ(t)p(t) > 0 for all t ∈ qN0 .

Using the introduced function µ, the derivative can be defined as follows.

Definition 2.3. The derivative of a function f : qN0 → R is given by

f∆(t) =
f(σ(t))− f(t)

µ(t)
=
f(qt)− f(t)

(q − 1)t
for all t ∈ qN0 .

Definition 2.4 (See [4]). Let p ∈ R and s ∈ qN0 . The exponential function
is defined by

ep(t, s) =
∏

k∈[s,t)∩qN0

(1 + (q − 1)kp(k)) for all t ∈ qN0with t > s,

ep(s, s) = 1, and ep(t, s) = 1
ep(s,t) for t < s.

It is not hard to show that the following property holds.

Theorem 2.1. If p ∈ R, then ep(t, s) = ep(t, r)ep(r, s) for all s, t, r ∈ qN0.

Theorem 2.2 (See [5, Theorem 2.44]). If p ∈ R+ and t0 ∈ qN0, then
ep(t, t0) > 0 for all t ∈ qN0.

Theorem 2.3 (See [5, Theorem 2.62]). Suppose p ∈ R. Let t0 ∈ qN0 and
y0 ∈ R. The unique solution of the initial value problem

y∆ = p(t)y, y(t0) = y0
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is given by
y = ep(·, t0)y0.

The integral in quantum calculus is defined in the following way.

Definition 2.5 (See [4, Definition 2.6]). Let m, n ∈ N0 with m < n. For
f : qN0 → R, we define∫ qn

qm
f(t) ∆t := (q − 1)

n−1∑
k=m

qkf(qk).

Theorem 2.4 (See [5, Theorem 2.36 and 2.39]). If p ∈ R and a, b, c ∈ qN0,
then∫ b

a
p(t)ep(t, c)∆t = ep(b, c)− ep(a, c),(4)

∫ b

a
p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).(5)

In particular in the last section, the following operations will be used.

Definition 2.6 (See [6, p. 10]). Define the “circle plus" addition on R as

(p⊕ q)(t) = p(t) + q(t) + (q − 1)tp(t)q(t),

and the “circle minus" subtraction as

(p	 q)(t) =
p(t)− q(t)

1 + (q − 1)tq(t)
.

Theorem 2.5 (See [6, Theorem 1.39]). If p, q ∈ R, then
ep⊕q(t, s) = ep(t, s)eq(t, s),(6)

e	p(t, s) = ep(s, t) =
1

ep(t, s)
.(7)

Besides the circle plus and circle minus operation, a circle dot operation
is defined.

Definition 2.7 (See [6, p. 18]). The circle dot multiplication � of a constant
value α and a function p ∈ R+ is defined as

(α� p) (t) = αp(t)

∫ 1

0
(1 + µ(t)hp(t))α−1dh,

if it exists.

Example 2.1. Let p ∈ R+ and α = 1
2 . Then(

1

2
� p
)

(t) =
1

2

∫ 1

0

p(t)√
1 + µ(t)hp(t)

dh
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=
1

µ(t)

(√
1 + µ(t)p(t)− 1

)
=

p(t)

1 +
√

1 + µ(t)p(t)
.

Note that by the definition of the dot multiplication,(
1

2
� (−α)

)
⊕
(

1

2
� (−α)

)
= −α.

We furthermore need the definition of periodicity for functions f : qN0 →
R.

Definition 2.8 (See [4]). A function f : qN0 → R is called ω-periodic
provided

f(t) = qωf(qωt) for all t ∈ qN0 .

3. The Beverton–Holt q-difference equation with exploitation

The Beverton–Holt q-difference equation was presented in [4] as

(8) x(qt) =
v(t)K(t)x(t)

K(t) + (v(t)− 1)x(t)
,

where K : qN0 → R+ is the carrying capacity, v : qN0 → (1,∞) is the
intrinsic growth rate, and x : qN0 → R+ represents the population density.
Using the substitution α = v−1

µv , we obtain the logistic dynamic equation

x∆(t) = α(t)x(qt)

(
1− x(t)

K(t)

)
,

that is well studied in [5].
We introduce exploitation to (8) by the catch-per-effort hypothesis, which

yields

(9) (1 +H(t))x(qt) =
v(t)K(t)x(t)

K(t) + (v(t)− 1)x(t)
,

where H : qN0 → R+ represents the harvest effort. When studying H(t), we
should be aware that the time intervals in the quantum calculus setting are
increasing. We can therefore express H more explicitly as H(t) = µ(t)h(t).
This allows us to investigate the harvest effort reduced by the time stretching
property.

Applying the substitution α = v−1
µv to (9), we obtain

(10) x(qt) =
K(t)x(t)

(1− µ(t)α(t))K(t) + µ(t)α(t)x(t)
− µ(t)h(t)x(qt),

which is equivalent to

x(qt)K(t)− µ(t)x(qt)α(t)K(t) + µ(t)x(qt)α(t)x(t)

= K(t)x(t)− µ(t)h(t)x(qt)K(t) + µ2(t)h(t)x(qt)α(t)K(t)

− µ2(t)h(t)x(qt)α(t)x(t),
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i.e.,

x∆(t) = x(qt)α(t) (1 + µ(t)h(t))

− x(qt)
α(t)

K(t)
x(t) (1 + µ(t)h(t))− h(t)

(
x(t) + µ(t)x∆(t)

)
,

i.e.,

(11) x∆(t) = x(qt)α(t)

(
1− x(t)

K(t)

)
− E(t)x(t),

where E(t) = h(t)
1+µ(t)h(t) = −(	h)(t). Recall that the logistic differential

equation including exploitation is given in the similar form

x′(t) = x(t)α(t)

(
1− x(t)

K(t)

)
− E(t)x(t).

The q-difference equation (11) is solved by using the transformation u = 1/x,
which yields

(12) u∆(t) = −α(t)u(t) +
α(t)

K(t)
+

h(t)

1 + µ(t)h(t)
u(qt),

i.e.,

u∆(t) = (h⊕ (−α)) (t)u(t) +
α(t)(1 + µ(t)h(t))

K(t)
.

This is in the form of a first-order q-difference equation with the solution
given in [5] by

(13) u(t) = eh⊕(−α)(t, t0)u(t0) +

∫ t

t0

eh⊕(−α)(t, qs)
α(s)(1 + µ(s)h(s))

K(s)
∆s.

3.1. Existence and uniqueness Theorem. In this section, we are inter-
ested in providing conditions for the existence and uniqueness of a periodic
solution. We aim to prove the following theorem.

Theorem 3.1. Assume
(14)

K: qN0 → R+ is ω-periodic,
α : qN0 → R+ is ω-periodic and 0 < µ(t)α(t) < 1 for all t ∈ qN0 ,

h : qN0 → R+ is ω-periodic and 0 < h(t) < 	(−α(t)) for all t ∈ qN0 .

Then (10) has a unique ω-periodic solution which globally attracts all positive
solutions.

Let us first present the following lemmas that will assist us in the analysis.

Lemma 3.1. If f, g ∈ R are ω-periodic, then f ⊕ g and f 	 g is ω-periodic.
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Proof. We have

qω (f ⊕ g) (qωt) = qω(f(qωt) + g(qωt) + µ(qωt)f(qωt)g(qωt))

= qω(q−ωf(t) + q−ωg(t) + qωµ(t)q−ωf(t)q−ωg(t)) = (f ⊕ g)(t)

for all t ∈ qN0 . Also,

qω (	g) (qωt) = qω
−g(qωt)

1 + µ(qωt)g(qωt)

= qω
−q−ωg(t)

1 + qωµ(t)q−ωg(t)

=
−g(t)

1 + µ(t)g(t)
= (	g)(t),

which completes the proof since f 	 g = f ⊕ (	g). �

Lemma 3.2. If f ∈ R is ω-periodic, then

(15) ef (qωt, qωt0) = ef (t, t0) for all t ∈ qN0

and

(16) ef (qωt, t) = ef (qωt0, t0) for all t ∈ qN0 .

Proof. Let a, b ∈ N0 such that t0 = qa and t = qb, and assume w.l.o.g.
t > t0. Then

ef (qωt, qωt0) =
b+ω−1∏
i=a+ω

[
1 + µ(qi)f(qi)

]
=

b−1∏
i=a

[
1 + µ(qi+ω)f(qi+ω)

]
=

b−1∏
i=a

[
1 + qωµ(qi)q−ωf(qi)

]
=

b−1∏
i=a

[
1 + µ(qi)f(qi)

]
= ef (t, t0).

For the second equation, note that

ef (qωt, t) = ef (qωt, qωt0)ef (qωt0, t)

(15)
= ef (t, t0)ef (qωt0, t) = ef (qωt0, t0),

which completes the proof. �

Lemma 3.3. If (14) holds, then h⊕ (−α) ∈ R+.

Proof. We have

1 + µ(t)(h⊕ (−α))(t) = (1 + µ(t)h(t))(1− µ(t)α(t)) > 0

since µα ∈ (0, 1). �

Lemma 3.4. Assume (14). If β(t) := α(t)
K(t)(1+µ(t)h(t)), then β(qωt) = β(t)

for all t ∈ qN0.
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Proof. We have

β(qωt) =
α(qωt)

K(qωt)
(1 + µ(qωt)h(qωt)) =

q−ωα(t)

q−ωK(t)
(1 + qωµ(t)q−ωh(t))

=
α(t)

K(t)
(1 + µ(t)h(t)) = β(t),

which shows the claim. �

Proof of Theorem 14. If x̄ is any ω-periodic solution of (10), then the cor-
responding periodic solution ū of (12) satisfies ū(t) = q−ωū(qωt). Then

ū(t) = q−ωū(qωt) = q−ωeh⊕(−α)(q
ωt, t0)ū(t0)

+ q−ω
∫ qωt

t0

eh⊕(−α)(q
ωt, qs)β(s)∆s

= q−ωeh⊕(−α)(q
ωt, t)eh⊕(−α)(t, t0)ū(t0)

+ q−ω
∫ t

t0

eh⊕(−α)(q
ωt, t)eh⊕(−α)(t, qs)β(s)∆s

+ q−ω
∫ qωt

t
eh⊕(−α)(q

ωt, t)eh⊕(−α)(t, qs)β(s)∆s

(16)
= q−ωeh⊕(−α)(q

ωt0, t0)ū(t)

+ q−ωeh⊕(−α)(q
ωt0, t0)

∫ qωt

t
eh⊕(−α)(t, qs)β(s)∆s,

where β(s) := α(s)(1+µ(s)h(s))
K(s) . We have

(17) ū(t) =
1

qωeh⊕(−α)(t0, qωt0)− 1

∫ qωt

t
eh⊕(−α)(t, qs)β(s)∆s.

Conversely, the solution (17) satisfies ū(t) = q−ωū(qωt). To realize that, let
λ := qωeh⊕(−α)(t0, q

ωt0)− 1 6= 0. Then we have

q−ωū(qωt) =
q−ω

λ

∫ q2ωt

qωt
eh⊕(−α)(q

ωt, qs)β(s)∆s

=
q−ω

λ

2ω−1∑
i=ω

µ(tqi)eh⊕(−α)(q
ωt, qi+1t)β(qit)

=
q−ω

λ

ω−1∑
i=0

µ(tqi+ω)eh⊕(−α)(q
ωt, qi+ω+1t)β(qi+ωt)

(15)
=

1

λ

ω−1∑
i=0

µ(tqi)eh⊕(−α)(t, q
i+1t)β(qit)
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=
1

λ

∫ qωt

t
eh⊕(−α)(t, qs)β(s)∆s = ū(t).

Therefore the unique ω-periodic solution of (10) is given by

x̄(t) = λ

(∫ qωt

t
eh⊕(−α)(t, qs)β(s)∆s

)−1

,

where λ = qωeh⊕(−α)(t0, q
ωt0)− 1 6= 0 and β(s) = α(s)(1+µ(s)h(s))

K(s) .
It is left to show that the ω-periodic solution is globally attractive. Let

therefore x be any solution of (10) with x0 > 0. Then

|x(t)− x̄(t)| =

∣∣∣∣∣ 1

eh⊕(−α)(t, t0) 1
x(t0) +

∫ t
t0
eh⊕(−α)(t, qs)β(s)∆s

− 1

eh⊕(−α)(t, t0) 1
x̄(t0) +

∫ t
t0
eh⊕(−α)(t, qs)β(s)∆s

∣∣∣∣∣
≤

eh⊕(−α)(t, t0)
∣∣∣ 1
x(t0) −

1
x̄(t0)

∣∣∣(∫ t
t0
eh⊕(−α)(t, qs)β(s)∆s

)2

≤ ‖K‖2∞
eh⊕(−α)(t, t0)

∣∣∣ 1
x(t0) −

1
x̄(t0)

∣∣∣(∫ t
t0
−eh⊕(−α)(t, qs) (h⊕ (−α)) ∆s

)2

≤ ‖K‖2∞
eh⊕(−α)(t, t0)

∣∣∣ 1
x(t0) −

1
x̄(t0)

∣∣∣(
1− eh⊕(−α)(t, t0)

)2 .

The last term tends to zero as t → ∞ because −1 < µ(t)(h ⊕ (−α))(t) <
0. �

4. The optimal sustainable yield

In order to discuss the maximum sustainable yield, let us recall that in
quantum calculus, the time steps increase as time passes. To take this change
of time intervals into consideration, we analyze the average of the harvest at
each time step. This yields the formulation of the average of the sustainable
yield

Y (h) =
1

ω(q − 1)

∫ qωt0

t0

µ(t)h(t)xσ(t) ∆t.

Theorem 4.1. Assume (14). Then the sustainable yield over one period

Y (h) =
1

ω(q − 1)

∫ t0qω

t0

µ(t)h(t)x̄(qt)∆t
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is maximal for

(18) h∗ = 	qlσ 	
(
m
α

)∆(
m
α

) 	 P 	 K∆

K
,

where l = 1
2 � (−α), m = l 	 P , P = p∆

p with p(t) =
√
t. The maximum

sustainable yield is then

Y (h∗) =

∫ qωt0

t0

µ(s)

(
m2K

α

)
(s)∆s.

Remark 4.1. The harvest yield has the property

Y (h) =
1

ω(q − 1)

∫ t0qω

t0

µ(t)h(t)x̄(t)∆t =
1

ω(q − 1)

∫ t∗qω

t∗
µ(t)h(t)x̄(t)∆t

for any t∗ ∈ qN0 .

In order to prove Theorem 4.1, the following lemmas will be useful.

Lemma 4.1. If f ∈ R, then

(19) ef∆/f (t, s) =
f(t)

f(s)

for s, t ∈ qN0.

Proof. Assume first t > s. Then

ef∆/f (t, s) =
∏

τ∈[s,t)∩qN0

[
1 + µ(τ)

f∆(τ)

f(τ)

]
=

∏
τ∈[s,t)∩qN0

fσ(τ)

f(τ)
=
f(t)

f(s)
.

If t < s, then

ef∆/f (t, s) =
1

ef∆/f (s, t)
=

1

f(s)/f(t)
=
f(t)

f(s)
,

and if t = s, then ef∆/f (t, s) = 1. �

Lemma 4.2. Let p : qN0 → R, p(s) =
√
s. Then the function p∆

p : qN0 → R
is ω-periodic for any ω ≥ 1.

Proof. Let ω ≥ 1. Then

qω
p∆(qωt)

p(qωt)
= qω

(
pσ(qωt)

µ(qωt)p(qωt)
− 1

µ(qωt)

)
= qω

( √
qω+1t

qωµ(t)
√
qωt
− 1

qωµ(t)

)
=

( √
qt

µ(t)
√
t
− 1

µ(t)

)
=
p∆(t)

p(t)
,

which completes the proof. �
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Lemma 4.3. If l ∈ R, then
(20) eqlσ(t, s) = el(qt, qs).

Proof. Let i, n ∈ N0 such that t = qi and s = qn. Then for t > s

eqlσ(t, s) =
i−1∏
j=n

[
1 + µ(qj)ql(qj+1)

]
=

i∏
j=n+1

[
1 + µ(qj)l(qj)

]
= el(qt, qs).

For t < s,

eqlσ(t, s) =
1

eqlσ(s, t)
=

1

el(qs, qt)
= el(qt, qs)

and if t = s, then eqlσ(t, s) = 1 = el(qt, qs). �

Lemma 4.4. Let m, l, P be defined as in Theorem 4.1. Then

(21) em(t0, q
ωt0) =

√
qωel(t0, q

ωt0).

Proof. We have

em(t0, q
ωt0)

(6)
= el(t0, q

ωt0)e	P (t0, q
ωt0)

(19)
= el(t0, q

ωt0)

√
qωt0√
t0

,

which completes the proof. �

Lemma 4.5. Let m, l, P be defined as in Theorem 4.1. Then

(22) (1 + µ(t)l(t)) =
√
q(1 + µ(t)m(t)).

Proof. We have

1 + µ(t)m(t) = 1 + µ(t)
l(t)− P (t)

1 + µ(t)P (t)
=

1 + µ(t)l(t)

1 + µ(t)P (t)

=
1 + µ(t)l(t)

pσ(t)
p(t)

=
1 + µ(t)l(t)
√
q

,

which shows the claim. �

Lemma 4.6. Let m,h∗ be defined as in Theorem 4.1 and (14). Then

(23) λ∗ = λ(h∗) = em(t0, q
ωt0)− 1.

Proof. We have

λ(h∗) = qωe−α⊕h∗(t0, q
ωt0)− 1

= qωel⊕l	qlσ(t0, q
ωt0)

p(qωt0)

p(t0)

K(qωt0)

K(t0)

m(qωt0)α(t0)

α(qωt0)m(t0)
− 1

= qωel⊕l	qlσ(t0, q
ωt0)
√
qωq−ω − 1

= qωel(t0, q
ωt0)
√
qωq−ω − 1

= qωel(t0, q
ωt0)
√
qωq−ω − 1

(21)
= em(t0, q

ωt0)− 1.

This completes the proof. �
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Lemma 4.7. Let m,h∗ be defined as in Theorem 4.1. Then

(24) eh∗(qωt0, t0) = em(t0, q
ωt0).

Proof. We have

eh∗(qωt0, t0)
(19)
= e	qlσ(qωt0, t0)

p(t0)

p(qωt0)

K(t0)

K(qωt0)

α(qωt0)m(t0)

m(qωt0)α(t0)

= el(t0, q
ωt0)

1√
qω

1

q−ω
= el(t0, q

ωt0)
√
qω

(21)
= em(t0, q

ωt0). �

Lemma 4.8. If F : qN0 → R satisfies F (qωt) = q−2ωF (t), then

(25)
∫ qω+1t0

qt0

tF (t)∆t =

∫ qωt0

t0

tF (t)∆t.

Proof. W.l.o.g., let t0 = q0 = 1. Then∫ qω+1t0

qt0

tF (t)∆t =
ω∑
n=1

µ(qn)qnF (qn)

=
ω−1∑
n=1

µ(qn)qnF (qn) + µ(qωt0)qωF (qωt0)

=

ω−1∑
n=1

µ(qn)qnF (qn) + µ(t0)F (t0)

=

ω−1∑
n=0

µ(qn)qnF (qn) =

∫ qωt0

t0

tF (t)∆t,

which proves the statement. �

Lemma 4.9. Let G ∈ R be ω-periodic. Then

(26)
∫ qωt0

t0

qGσ(t)∆t =

∫ qωt0

t0

G(t)∆t.

Proof. W.l.o.g., let t0 = q0 = 1. Then∫ qωt0

t0

qGσ(t)∆t =
ω−1∑
n=0

µ(qn)qG(qn+1)

=
ω∑
n=1

µ(qn)G(qn) =
ω−1∑
n=1

µ(qn)G(qn) + µ(qωt0)G(qωt0)

=
ω−1∑
n=1

µ(qn)G(qn) + µ(t0)G(t0) =
ω−1∑
n=0

µ(qn)G(qn) =

∫ qωt0

t0

G(t)∆t.

The proof is complete. �
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Proof of Theorem 4.1. We use the notation: l = 1
2 � (−α). Then l is ω-

periodic and l⊕ l = −α. Let m = l	 P and n = l⊕ P . Then m⊕ n = −α.
We apply the weighted Jensen inequality [19] (see also [1]) in the following
way

(q − 1)ωY (h) =

∫ qωt0

t0

µ(t)h(t)
λ∫ qω+1t

qt e−α⊕h(qt, qs)α(s)(1+µ(s)h(s))
K(s) ∆s

∆t

(6)
=

∫ qωt0

t0

µ(t)h(t)
λ∫ qω+1t

qt em(qt, qs)en(qt, qs)eh(qt, s) α(s)m(s)
K(s)m(s)∆s

∆t

≤ λ
∫ qωt0

t0

µ(t)h(t)

∫ qω+1t
qt em	n(qt, qs)eh(s, qt)K(s)m2(s)

α(s) ∆s

(
∫ qω+1t
qt em(qt, qs)m(s)∆s)2

∆t

(5)
= λ

∫ qωt0

t0

µ(t)h(t)

∫ qω+1t
qt

s
t eh(s, qt)K(s)m2(s)

α(s) ∆s

(1− em(t0, qωt0))2
∆t

=
λ

(1− em(t0, qωt0))2

ω−1∑
i=0

µ2(qi)h(qi)

i+ω∑
j=i+1

µ(qj)eh(qj , qi+1)K(qj)m2(qj)

qi−jα(qj)

=
λ(q − 1)

(1− em(t0, qωt0))2


ω∑
j=1

µ(qj)qjK(qj)m2(qj)

α(qj)

j−1∑
i=0

µ(qi)h(qi)eh(qj , qi+1)

+

2ω−1∑
j=ω+1

µ(qj)qjK(qj)m2(qj)

α(qj)

ω−1∑
i=j−ω

µ(qi)h(qi)eh(qj , qi+1)


=

λ(q − 1)

(1− em(t0, qωt0))2

{∫ qω+1t0

qt0

s
K(s)m2(s)

α(s)

∫ s

t0

h(τ)eh(s, qτ)∆τ∆s

+

∫ qωt0

qt0

s
K(s)m2(s)

α(s)

∫ qωt0

s
h(τ)eh(sqω, qτ)∆τ∆s

}
(5)
=

λ(q − 1)

(1− em(t0, qωt0))2

{∫ qω+1t0

qt0

s
K(s)m2(s)

α(s)
[eh(s, t0)− 1]∆s

+

∫ qωt0

qt0

s
K(s)m2(s)

α(s)
[eh(sqω, s)− eh(sqω, t0q

ω)]∆s

}

=
λ(q − 1)

(1− em(t0, qωt0))2

∫ qω+1t0

qt0

s
K(s)m2(s)

α(s)
[eh(qωt0, t0)− 1]∆s
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(6)
=

(19)

λ[eh(qωt0, t0)− 1](q − 1)

(1− qω/2el(t0, qωt0))2

∫ qω+1t0

qt0

s
K(s)m2(s)

α(s)
∆s

≤ (q − 1)

∫ qω+1t0

qt0

s
K(s)m2(s)

α(s)
∆s

(25)
=

∫ qωt0

t0

µ(s)
K(s)m2(s)

α(s)
∆s,

where we have used that
λ[eh(qωt0, t0)− 1]

(1− qω/2el(t0, qωt0))2
≤ 1.

To realize this, note that

[qωel⊕l⊕h(t0, t0q
ω)− 1][el	l	h(t0, q

ωt0)− 1]

≤ qωe2
l (t0, q

ωt0)− 2qω/2el(t0, q
ωt0) + 1,

i.e.,
qωel⊕h(t0, t0q

ω) + e	l	h(t0, q
ωt0)− 2qω/2 ≥ 0,

i.e., (
qω/2

√
el⊕h(t0, t0qω)−

√
e	l	h(t0, qωt0)

)2
≥ 0.

Now, we show that the optimal harvest yield is obtained at h∗:

ω(q − 1)Y (h∗) =

∫ qωt0

t0

µ(t)h∗(t)λ∗∫ qω+1t
qt e−α⊕h∗(qt, qs)α(s)(1+µ(s)h∗(s))

K(s) ∆s
∆t

(6)
=

(19)

∫ qωt0

t0

µ(t)h∗(t)λ∗∫ qω+1t
qt e−α(qt, qs)e	qlσ(qt, s)e	P (qt, s) K(s)

K(qt)
m(s)α(qt)
α(s)m(qt)

α(s)
K(s)∆s

∆t

(20)
= λ∗

∫ qωt0

t0

µ(t)h∗(t)m(qt)K(qt)
α(qt)∫ qω+1t

qt el⊕l(qt, qs)e	l(q2t, qs)e	P (qt, qs) 1√
qm(s)∆s

∆t

(21)
= λ∗

√
q

∫ qωt0

t0

µ(t)h∗(t)
m(qt)K(qt)

α(qt) (1 + µ(qt)l(qt))∫ qω+1t
qt em(qt, qs)m(s)∆s

∆t

(5)
= λ∗

√
q

∫ qωt0

t0

µ(t)h∗(t)
m(qt)K(qt)

α(qt) (1 + µ(qt)l(qt))

1− em(qt, qω+1t)
∆t

(23)
= −√q

∫ qωt0

t0

µ(t)h∗(t)m(qt)
K(qt)

α(qt)
(1 + µ(qt)l(qt))∆t

= −√q
∫ qωt0

t0

µ(t)m(qt)
K(qt)

α(qt)
{h∗(t)(1 + µ(t)ql(qt)) + ql(qt)− ql(qt)∆t}
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= −√q
∫ qωt0

t0

µ(t)m(qt)
K(qt)

α(qt)
(h∗ ⊕ qlσ)(t)∆t

+
√
q

∫ qωt0

t0

µ(t)m(qt)
K(qt)

α(qt)
ql(qt))∆t

= −√q
∫ qωt0

t0

µ(t)m(qt)
K(qt)

α(qt)

(
	p

∆

p
	 K∆

K
	
(
m
α

)∆(
m
α

) ) (t)∆t

+
√
q

∫ qωt0

t0

µ(qt)l(qt)m(qt)
K(qt)

α(qt)
∆t

(22)
=
√
q

∫ qωt0

t0

µ(t)

(
m
K

α

)
(t)
p∆(t)

pσ(t)
∆t+

√
q

∫ qωt0

t0

µ(t)
(
K
m

α

)∆
(t)∆t

+
√
q

∫ qωt0

t0

(
√
q(1 + µ(t)m(t))σ − 1)

(
m
K

α

)σ
(t)∆t

=
√
q

∫ qωt0

t0

µ(t)

(
m
K

α

)
(t)
p∆(t)

pσ(t)
∆t

+
√
q

∫ qωt0

t0

(
m
K

α

)σ
(t)−

(
m
K

α

)
(t)∆t

+
√
q

∫ qωt0

t0

(
√
q(1 + µ(t)m(t))σ − 1)

(
m
K

α

)σ
(t)∆t

=
√
q

∫ qωt0

t0

(
m
K

α

)
(t)

{
−1 + µ(t)

p∆(t)

pσ(t)

}
∆t

+
√
q

∫ qωt0

t0

√
qµ(qt)

(
m2K

α

)σ
(t)∆t

+
√
q

∫ qωt0

t0

√
q

(
m
K

α

)σ
(t)∆t

= −
∫ qωt0

t0

(
m
K

α

)
(t)∆t+

∫ qωt0

t0

qµ(qt)

(
m2K

α

)σ
(t)∆t

+

∫ qωt0

t0

q

(
m
K

α

)σ
(t)∆t

(26)
=

∫ qωt0

t0

µ(t)

(
m2K

α

)
(t)∆t,

which completes the proof. �
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Example 4.1. Let us consider the case of ω = 1, i.e.,K(t) = κ
t and α(t) = a

t

for some positive constants κ, α, with 0 < a < 1
q−1 . Theorem 4.1 provides

the optimal harvest effort that maximizes the average of the sustainable
yield

Y (h) =
1

ω(q − 1)

∫ t0qω

t0

µ(t)h(t)x̄(qt)∆t

as

h∗ = 	qlσ 	 P 	
(
m
α

)∆
m
α

	 K∆

K
,

where l = 1
2 � (−α), m = l 	 P , P = p∆

p with p(t) =
√
t. In the case of

one-periodic coefficients, which refers to the constant coefficients case in the
continuous and discrete model, h∗ simplifies to

h∗ = 	l ⊕ P.
To realize that, observe first that

	qlσ(t) = 	l(t)
because

	qlσ(t) =
−qlσ(t)

1 + µ(t)qlσ(t)
=

qα(qt)

1+
√

1−µ(qt)α(qt)

1 + µ(qt) −α(qt)

1+
√

1−µ(qt)α(qt)

=
qα(qt)

1 +
√

1− µ(qt)α(qt)− µ(qt)α(qt)

=
a
t

1 +
√

1− µ(t)at − µ(t)at
= 	l.

In the case of constant coefficients, we have

f 	 K∆

K
= f ⊕ 1

t
.

This is true because(
	K

∆

K

)
(t) =

−K∆(t)

K(qt)
=
−1

µ(t)
+

K(t)

µ(t)K(qt)
=
−1

µ(t)
+

κ
t

µ(t) κqt

=
−1

µ(t)
+

q

µ(t)
=
q − 1

µ(t)
=

q − 1

(q − 1)t
=

1

t
.

Finally, note that

h∗ = 	l ⊕ p∆

p
because

p∆(t)

p(t)
	 1

t
=
p∆(t)

p(t)
	 1

t
=

p∆(t)
p(t) −

1
t

1 + µ(t)1
t

=

1
µ(t)

(
p(qt)
p(t) − 1

)
− 1

t

q
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=
1

q

( √
q − 1

(q − 1)t
− 1

t

)
=

1

(q − 1)t

(√
q − 1

q
− q − 1

q

)
=

1

(q − 1)t

(
1
√
q
− 1

)
=
−1

µ(t)

(
p(qt)− p(t)

p(qt)

)
= −p

∆(t)

p(qt)
= 	p

∆(t)

p(t)
.

For example, if we chose T = 2N0 and one-periodic coefficients, then

h∗(t) =
P − l
1 + µl

=

√
2−1
t + α

1+
√

1−µ(t)α(t)

1− µ(t) α

1+
√

1−µ(t)α(t)

.

Note that h∗ is a one-periodic function, i.e.,

h∗(t) =
H

t
, H =

√
2− 1 + a

1+
√

1−(q−1)a

1− (q − 1) a

1+
√

1−(q−1)a

,

where α = a
t . Figure 1 shows the optimal harvest effort h∗ and also h∗

without the time-stretching factor, i.e., h∗t = H for α = a
t and a = 0.3.

Figure 1. The optimal harvest h∗ (stars) and h∗t = H (dots).

Figure 2 shows the relation of h∗ with respect to the growth rate α reduced
by its time-stretching character, i.e., αt = a. Note that this is a similar
behavior as in the case T = Z with constant coefficients, where the optimal
harvest effort h∗ had the behavior with respect to the one-periodic/constant
growth rate as visualized in Figure 3. The difference in the values is caused
by the fact that h∗ is expressed without the time-stretching factor.
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